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Abstract. We have studied nonlinear excitations of a quasi-one-dimensional anisotropic
Heisenberg model subject to an external magnetic field. We have particularly been interested
in the situation where the Zeeman energy can be varied continuously as a function of the parameter
r. Taking the continuum limit, we have been able to show that this magnetic system can be
mapped approximately onto the one-dimensional deformable sine–Gordon model at extremely low
temperatures. Two classes of implicit soliton solutions that depend onr are presented and the total
density of kinks and antikinks are calculated at low temperatures.

Nonlinear excitations in quasi-one-dimensional (1D) magnetic systems have received much
theoretical, experimental and computational attention in recent years, primarily ferromagnetic
easy-plane, orS = 1/2 systems [1–10]. However, the applicability of an idealized concept
to real physical systems for the understanding of soliton properties is limited, since it is
unlikely that physical condensed matter will be exactly described by potentials with defined
shapes. In those systems, the shape of nonlinear one-site potential may deviate considerably
from that attributed to the local potential. It is established that under variation of some
physical parameters such as the temperature and pressure, some physical systems may undergo
changes which are either shape distortion, variations of crystalline structures or conformational
changes. For example, in solid hydrogen halides under pressure, as pressure is increased, the
central barrier reduces rapidly until a critical pressure has been reached and the system has
undergone a phase transition to symmetric phase [11]. On the other hand, using pseudopotential
band-structure results, it has been shown that the electrostatic energy of a unit point charge
located in Si along the (111) direction can be described by deformable double-well potentials
[12–14]. This electrostatic energy has its minimum at the tetrahedral interstitial site whereas
the hexagonal site is a saddle point [13]. Volume effects in perovskite-type oxides can also
lead to deformable double-well potentials. For example, for KTaO3, the set of total-energy
curves over independent displacements of individual atoms along (111) and (001) directions
have been obtained for a sequence of volumes [15]. The displacement of Ta occurs in an
even more anisotropic potential well, the shape of which apparently indicates considerable
phonon frequency softening below the experimental volume as well as the tendency to go
off centre, forming a ferroelectric structure for larger volumes. The dynamical behaviour of a
sine–Gordon (sG) soliton in the presence of external perturbations has been discussed by Fogel
et al [16, 17], where they concluded that sG solitons in many respects behave as deformable
classical particles whose dynamics are governed by Newton’s law. An interesting problem to
be studied is the possibility of the formation of deformable coherent structures in quasi-1D
ferromagnets.
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The purpose of this paper is to present briefly the deformable-spin model Hamiltonian. We
analyse this model based on the standard field theoretical techniques and identify solitary-wave
solutions.

The system we consider is described by the Hamiltonian

H = −J
∑
n

ESn ESn+1 +A
∑
n

(
Szn
)2

+ gµB EB
∑
n

(1− r)2(1− ESn)
1 + r2 + 2r ESn

(1)

where the first term represents the isotropic ferromagnetic Heisenberg exchange interaction
between neighbouring spins denoted by the vectorsESn andESn+1 with exchange constantJ > 0.
The second term represents the easy-plane (xy) anisotropy energy withA > 0 and the last
term represents the deformable Zeeman energy of the spins in an external magnetic field
(Bx = B) perpendicular to the chain axis (Z). g andµB are the Land́eg-factor and the Bohr
magneton, respectively. The shape parameterr varies in the range−1< r < 1 as previously
introduced by Remoissenet and Peyrard [18, 19]. Whenr = 0, we recover the familiar Zeeman
energy. The introduction of this new term yields new features, and in particular the existence
of deformable domain-wall structures.

Since we are going to treat the problem classically, at sufficiently low temperatures
(T � (AJ )1/2) [1], we introduce at this level the classical approximation in the sense that,
neglecting quantum effects (A/JS(S + 1)� 4π2) [20], we treat the spin as an ordinary vector
of lengthS specified by two polar anglesθ andφ. In spherical coordinatesESn is written as

ESn = S(sinθn cosφn, sinθn sinφ, cosθn) (2)

where 06 θn 6 π is the excursion angle of the magnetization from the (Sx, Sy) plane, and
0 6 φn 6 2π represents the azimuthal angle ofESn in the (Sx, Sy) plane. The spin dynamics
is described by the usual undamped Bloch equation. In the continuum approximation, and
keeping terms up to second order in lattice spacinga over wavelengthλ > 2πa(2A/J )−1/2,
we obtain the following partial differential equation

h̄φt sinθ = JSa2(θZZ sinθ − φ2
Z sinθ cosθ) + 2A sinθ cosθ

+gµBB
(1− r2)2 cosθ cosφ

(1 + r2 + 2rS sinθ cosφ)2
(3a)

−h̄θt = JSa2(φZZ sinθ + 2φZθZ cosθ)− gµBB (1− r2)2 sinφ

(1 + r2 + 2rS sinθ cosφ)2
. (3b)

Here, subscripts denote differentiation andZ is the position on the chain. For magnetic fields
JS/gµBB � 1, equations (3a) and (3b) can be reduced to the deformable sG equation

φtt − C2
0φZZ + ω2

0

(
1− r2

)2 sinφ

(1 + r22r cosφ)2
= 0 (4a)

θ = (h̄/2AS)φt (4b)

where

C2
0 = 2AJS2a2/h̄2 ω2

0 = 2AgµBBS/h̄
2. (4c)

The constantC0 is the characteristic velocity andω0 the characteristic frequency of the spin
system. In this derivation we highlight certain aspects that are also found in the investigation
of the previous works [1, 5]. Before proceeding with further analysis of this problem, it is
useful to see that the last term in equation (4a) is precisely the first derivative with respect to
φ, that is (∂VRP (φ, r)/∂φ), of the Remoissenet–Peyrard (RP) potential

VRP (φ, r) = (1− r)2 1− cosφ

1 + r2 + 2r cosφ
|r| < 1. (4d)
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Whenr = 0, the RP potential reduces to the sG potential. The deformable sG equation has
solutions in the form of large-amplitude travelling waves (kinks), low-amplitude linear modes
(spin waves or magnons) and breathers [18, 19]. Our recent results based on the RP potential
have shown that the dependence of the diffusion coefficient of adsorbates in metallic substrates
on the deformability parameterrcan explain the gaps observed on existing measurements [21].
The critical nucleus has been studied and the nucleation rate of kink–antikink pairs has been
determined at low temperatures and in the limit of strong damping [22]. The two families
of implicit kink solutions withv given in terms of the moving coordinatess = x − vt are
travelling-wave rotations of the spins through 2π within the easy plane, with the spin tilting
out of the easy plane being proportional to the kink translation velocity 06 v < C0, and are
described as [18, 19]

γ S

d(1)
= sgn(φ − π)

{
(1− α2)1/2

α
tan−1

[
(1− α2)1/2

[α2 + tan2(φ/2)]1/2

]
+ tanh−1

{
α

[α2 + tan2(φ/2)]1/2

}}
(5a)

with the rest energy

E
(1)
S = 8A′C0ω0α(1− α2)−1/2 tan−1

[
(1− α2)1/2

α

]
(5b)

for −1< r 6 0, and

γ S

d(2)
= sgn(π − φ)

{
(1− α2)1/2 tanh−1

[
(1− α2)1/2

[1 + α2 tan2(φ/2)]1/2

]
− tanh−1 1

[α2 + tan2(φ/2)]1/2

}
(6a)

with the rest energy

E
(2)
S = 8A′C0ω0α(1− α2)−1/2 tanh−1[(1− α2)1/2] (6b)

for 06 r < 1, with

α = 1− |r|
1 + |r| d(1) = d0α d(2) = d0/α (7a)

d0 = C0/ω0 A′ = h̄2/2Aa γ = (1− v2/C2
0)
−1/2. (7b)

This rotation occurs over a characteristic lengthd(j)(j = 1, 2) which are the ‘pseudokink
widths’, determined by the applied field (for velocitiesv � C0), and the shape parameterr.
The antikink solutions are obtained by replacingφ by (2π − φ) in equations (5a) and (6a).
For r = 0, equations (5) and (6) reduce to the usual sG kink. Whenr tends to 1,d(2) tends to
infinity. On the other hand, whenr decreases and tends to−1,d(1) tends to zero. Thus, the kink
extension is not only determined by the characteristic length scaled0, but also by the curvature
of the minima of the potential. The deformable sG equation has the low-amplitude periodic
wave solutions of the formφ = φq cos(qZ − ωqt) corresponding to small oscillations of the
spin vector around one of the ground states which form a continuous spectrum characterized
by the dispersion

ω2
q = ω2

r +C2
0q

2 ωr =
(

1− r
1 + r

)
ω0 (8)

whereωr is a characteristic frequency of oscillations of an isolated spin vector at the bottom of
the substrate potential well (φ = 2πn, n integer) andq, the wavevector. The magnitude ofφq
is required to be infinitesimally small especially in the cases wherer →−1 (potential with a
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sharp bottom) [19]. Breather solitons, which can be viewed as soliton–antisoliton bound states,
have been observed in numerical simulations by Peyrard and Remoissenet [19]. Considering
kink–antikink collisions, in the case of sharp potential wells (r < 0) leading to narrow kinks,
for r = −0.8, with v = ±0.1 C0, the two waves cannot separate from each other and they
form a stable breather mode. On the other hand, considering the case of the potential wells
with a flat bottom (r > 0), for very small value ofr(r = 0.15), the two waves form a breather
mode.

At low temperatures, the total density of kinks and antikinks is given by [23]

n
tot (j)

k−k̄ = n
(j)

0

(
1− 2B(j)n(j)0

)
(9)

with

n
(j)

0 =
2

d(j)

(
2

π

)1/2 (
8
√
m∗C̃(j)

)1/2
exp

[
−βE(j)S

]
(10a)

B(j) = d(j) ln
(
32γ
√
m∗C̃(j)

)
(10b)

C̃(1) = exp
{[

2(1− α2)1/2/α
]

tan−1
[
(1− α2)1/2/α

]}
α (11a)

C̃(2) = exp
{[−2(1− α2)1/2

]
tanh−1 [(1− α2)1/2

]}
/α (11b)

wheren(j)0 are the total density of kinks and antikinks within the ideal gas approximation and
γ = 1.7810. . . is Euler’s constant. The coefficientsB(j) are the logarithmic temperature
dependence, which are attributed to the exponential decay of the interaction potential between
soliton at large distances.The temperature-dependent parameterm∗ = A′2C2

0ω
2
0β

2 plays the
role of an effective mass of a particle, whereβ = 1/kBT , kB being the Boltzmann constant,
T the temperature.

We focus our attention on the archetypical example of a 1D ferromagnet CsNiF3, where
1D ordering appears in the temperature range 36 T 6 16 K [24], and whose Hamiltonian
can be described by equation (1). Our preliminary study presented in this paper must
be pursued in order to relate the obtained theoretical results with the experimental data
for CsNiF3. Specifically, although effects of deformability of the medium are expected
to become significant, for example in the physical properties of localized waves, Pini and
Rettori [25] have demonstrated the inadequacy of the classical approximation for CsNiF3,
since the exact numerical transfer matrix data strongly disagree with the experimental results
for magnetization, specific heat, susceptibility and static spin-correlation functions. They,
consequently, suggested necessity of a quantum treatment. The problem has already been
addressed in the latter context by Cuccoliet al [26] using the pure-quantum self-consistent
harmonic approximation [27]. Nevertheless, interesting discussions by Cuccoliet al [26] have
shown how Hamiltonian (1), withr = 0, using the Weyl symbol, can be approximated by
the simpler planar model and by the sine–Gordon model. Again, our study reveals many
interesting features of the magnetic systems such as the case of Fe/Cr(211) superlattices which
is isomorphic to a classical two-sublattice, uniaxial, antiferromagnet [28, 29]. Recent study by
Trallori [30] shows the equivalence between the magnetic model and a Frenkel–Kontorova-
type model with an additional second-harmonic contribution to the sinusoidal potential, while
the Remoissenet–Peyrard potential contains more than two harmonics [18].

However, for the particle-like properties of solitons, the stability appears to be a necessary
condition. These problems are under consideration and will be published in a future work.
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